Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 71(7): 1671-1680, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34816323

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes that play a major role in the innate immune system. NK cells exhibit potent cytotoxic activity against cancer cells and virally infected cells without antigen priming. These unique cytotoxic properties make NK cells a promising therapeutic against cancer. Limitations of NK cell therapy include deficiencies in high clinical efficacy often due to a need for a high NK cell to target cell ratio to achieve effective killing. In order to address the suboptimal efficacy of current adoptive NK cell therapy, a high throughput screen (HTS) was designed and performed to identify drug-like compounds that increase NK cytotoxic activity against tumor cells without affecting the normal cells. This screen was performed in a 384-well plate format utilizing an expanded primary NK cell product and ovarian cancer cells as a target cell (TC) line. Of the 8000 diverse small molecules screened, 16 hits were identified (0.2% hit rate) based on both a robust Z (RZ) score < -3 and a greater than 10% increase in NK cell killing. A validation screen had a confirmation rate of 70%. Select compounds were further validated and characterized by additional cytotoxicity assays including activity against multiple blood cancer and solid tumor cell lines, with no effect on primary human T cells. This work demonstrates that high-throughput screening can be reliably used to identify compounds that increase NK tumoricidal activity in vitro that can be further investigated and translated for potential clinical application. Précis: Our work led to the identification of promising compound that potently increases NK cell-mediated killing of a variety of different cancer cells, but no impact on the killing of normal cells. This compound demonstrates the utility of this assay.


Assuntos
Detecção Precoce de Câncer , Neoplasias , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Linfócitos T
2.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925666

RESUMO

Current approaches do not eliminate all human immunodeficiency virus type 1 (HIV-1) maternal-to-infant transmissions (MTIT); new prevention paradigms might help avert new infections. We administered maraviroc (MVC) to rhesus macaques (RMs) to block CCR5-mediated entry, followed by repeated oral exposure of a CCR5-dependent clone of simian immunodeficiency virus (SIV) mac251 (SIVmac766). MVC significantly blocked the CCR5 coreceptor in peripheral blood mononuclear cells and tissue cells. All control animals and 60% of MVC-treated infant RMs became infected by the 6th challenge, with no significant difference between the number of exposures (P = 0.15). At the time of viral exposures, MVC plasma and tissue (including tonsil) concentrations were within the range seen in humans receiving MVC as a therapeutic. Both treated and control RMs were infected with only a single transmitted/founder variant, consistent with the dose of virus typical of HIV-1 infection. The uninfected RMs expressed the lowest levels of CCR5 on the CD4+ T cells. Ramp-up viremia was significantly delayed (P = 0.05) in the MVC-treated RMs, yet peak and postpeak viral loads were similar in treated and control RMs. In conclusion, in spite of apparent effective CCR5 blockade in infant RMs, MVC had a marginal impact on acquisition and only a minimal impact on the postinfection delay of viremia following oral SIV infection. Newly developed, more effective CCR5 blockers may have a more dramatic impact on oral SIV transmission than MVC.IMPORTANCE We have previously suggested that the very low levels of simian immunodeficiency virus (SIV) maternal-to-infant transmissions (MTIT) in African nonhuman primates that are natural hosts of SIVs are due to a low availability of target cells (CCR5+ CD4+ T cells) in the oral mucosa of the infants, rather than maternal and milk factors. To confirm this new MTIT paradigm, we performed a proof-of-concept study in which we therapeutically blocked CCR5 with maraviroc (MVC) and orally exposed MVC-treated and naive infant rhesus macaques to SIV. MVC had only a marginal effect on oral SIV transmission. However, the observation that the infant RMs that remained uninfected at the completion of the study, after 6 repeated viral challenges, had the lowest CCR5 expression on the CD4+ T cells prior to the MVC treatment appears to confirm our hypothesis, also suggesting that the partial effect of MVC is due to a limited efficacy of the drug. New, more effective CCR5 inhibitors may have a better effect in preventing SIV and HIV transmission.


Assuntos
Antagonistas dos Receptores CCR5/administração & dosagem , Cicloexanos/administração & dosagem , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Triazóis/administração & dosagem , Animais , Antagonistas dos Receptores CCR5/farmacocinética , Cicloexanos/farmacocinética , Humanos , Lactente , Maraviroc , Tonsila Palatina/química , Soro/química , Resultado do Tratamento , Triazóis/farmacocinética , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...